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Abstract

The Oahu Elepaio (Chasiempis ibidis) is an endangered forest bird endemic
to the Hawaiian island of Oahu. The two most serious threats to the Oahu
Elepaio are nest predation by nonnative black rats (Rattus rattus) and avian
pox (Avipoxvirus spp.), a disease carried by nonnative mosquitoes. The
Oahu Elepaio is conservation reliant because its continued existence
depends on rat control. We used 27 years of data from 1995 to 2021 on pox
prevalence, nest success, and fecundity with versus without rat control to
reexamine the severity of these threats. Prevalence of avian pox declined
over time. From 1995 to 2004, pox prevalence averaged 21% + 4% per year
and was positively related to annual rainfall. From 2005 to 2021, pox preva-
lence was only 2% + 0.1% and despite several wet years there was no rela-
tionship with rainfall. The Oahu Elepaio appears to have evolved resistance
to the pox variant currently in Hawaii. Elepaio nest success was higher with
rat control (58% + 1%) than without rat control (42% + 6%). Nest success
did not differ significantly between native tree species (52% + 6%) and non-
native tree species (58% + 6%) or between fruiting tree species (58% + 1%)
and nonfruiting species (61% + 6%). Elepaio annual fecundity was higher
with rat control (0.78 + 0.02) than without rat control (0.48 + 0.04) and var-
ied among sites and years. The two primary threats to the species have been
ameliorated through a combination of effective management and natural
adaptation. The species’ status should continue to improve if management
is maintained, and someday, if patterns of natural adaptation continue, it
could break free from conservation reliance.
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1 | INTRODUCTION

Identifying the threats responsible for causing a species
to decline is essential for implementing effective conser-
vation actions (Moore et al., 2021). However, some
threats can be difficult to manage or even impossible to
eliminate on a permanent basis (Baxter et al., 2008;
Doherty et al., 2016; McCallum, 2012), and species facing
such threats have been called “conservation reliant”
because their continued existence is reliant on manage-
ment in perpetuity (Reed et al., 2012; Scott et al., 2010).
Conservation reliance is especially common on islands
because island environments are particularly vulnerable
to invasion and island species that evolved in isolation
often lack natural defenses to novel threats and may have
reduced evolutionary capacity (Salo et al., 2007; Sih
et al., 2010; VanderWerf, 2012).

Few species listed under the U.S. Endangered Species
Act have been delisted because of effective management
and consequent recovery, and many are likely to remain
listed indefinitely and thus can be considered conserva-
tion reliant (Doremus & Pagel, 2001; Taylor et al., 2005).
In this study, we describe how management of an inva-
sive predator was used to indirectly facilitate natural
adaptation to an invasive pathogen that was difficult to
manage, and how this may provide a rare example in
which an endangered island bird species eventually could
break free from conservation reliance.

The Oahu Elepaio (Chasiempis ibidis), a territorial, non-
migratory monarch flycatcher (Monarchidae) endemic to
the Hawaiian island of Oahu (VanderWerf, 2020), has
declined severely in the last few decades and occupies less
than 4% of its presumed prehistoric range and only 25% of
the range occupied in 1975 (VanderWerf et al., 2013). In
2011, the total population was estimated to be 1261 birds
(95% CI = 1181-1343) and the fragmented range was esti-
mated to be 5187 ha (Figure 1; VanderWerf et al., 2013).
The Oahu Elepaio was listed as endangered under the
U.S. Endangered Species Act in 2000 (USFWS, 2000, 2006).

The two most serious threats to the Oahu Elepaio are
nest predation by nonnative black rats (Rattus rattus) and
avian pox, a disease caused by a virus (Avipoxvirus spp.)
that is carried by nonnative mosquitoes (hereafter “pox”;
USFWS, 2006; VanderWerf et al., 2006; VanderWerf, 2009).
VanderWerf and Smith (2002) showed that rat control is an
effective tool for managing nest predation, resulting in
higher nest success (61% vs. 33%), higher annual fecundity
(0.71 + 0.05 SE vs. 0.33 + 0.07 SE fledglings per pair), and
higher survival of nesting females. Following initial success
of rat control, this management tool has been implemented
in several areas by multiple agencies and has become the
cornerstone of the conservation strategy for the species
(VanderWerf, 2009; VanderWerf et al., 2011).

Diseases carried by nonnative mosquitoes, primarily
avian malaria (Plasmodium relictum) and avian pox, have
been the most serious threat to endemic Hawaiian forest
birds and continue to cause extinctions (Atkinson &
LaPointe, 2009; Paxton et al., 2016; van Riper et al., 2002).
The three elepaio species are less affected by mosquito-
borne diseases than most Hawaiian forest birds, but pox is
still a threat. Oahu Elepaio with pox lesions had 4%-10%
lower annual survival than elepaio with no pox symptoms
(VanderWerf, 2009). Pox prevalence in the Oahu Elepaio
has been variable but high in some years, with up to 47%
of birds captured exhibiting active lesions. VanderWerf
et al. (2006) found that pox prevalence was higher in years
with higher rainfall, which presumably created more
breeding habitat for mosquitoes. Climate change is
expected to allow altitudinal range expansion of mosqui-
toes in Hawaii, which would increase the severity of this
threat for other Hawaiian forest birds (Atkinson &
LaPointe, 2009; Benning et al., 2002; Garamszegi, 2011;
Paxton et al., 2016, Fortini et al., 2017), but not for the
Oahu Elepaio because the island has no mountains high
enough to provide refuge from the cold-intolerant mosqui-
toes that carry the pathogens, and mosquitoes are already
present throughout their range (VanderWerf et al., 2006).

The three elepaio species are adaptable in many ways,
which likely has allowed them to persist while many
other endemic Hawaiian forest birds have become
extinct. Elepaio are flexible in foraging behavior and diet
(VanderWerf, 1993, 1994, 2020) and readily forage and
nest in a variety of tree species and forest types, including
forest dominated by nonnative plants (VanderWerf, 2004;
VanderWerf, 2020; VanderWerf & Young, 2016). Vander-
Werf (2012) showed that the Oahu Elepaio has evolved to
nest higher off the ground in response to nest predation
by rats. The Oahu Elepaio breeding season is flexible and
has shifted in response to changing seasonal rainfall pat-
terns and associated resource availability (VanderWerf
et al., 2021). In addition, the Oahu Elepaio is the only
Hawaiian bird that has been observed anting, a behavior
that is thought to inhibit parasites or pathogens
(VanderWerf, 2005, 2020). All the plant and animal spe-
cies it has been observed to use for anting were intro-
duced to Hawaii recently by humans, providing another,
unusual demonstration of the capacity for learning and
adaptation in this species.

There is an interface between management and evo-
lution that offers opportunities to facilitate adaptations
that increase resiliency to threats (Luo et al., 2011;
Valenzuela-Sanchez et al., 2021). For example, Vander-
Werf and Smith (2002) advocated the use of rat control to
accelerate evolution of disease resistance in the Oahu
Elepaio. In this scenario, reducing predation through
rat control would increase survival and reproduction
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of disease-resistant individuals, which would have dispro-
portionately higher population growth, thereby increas-
ing the frequency of genes responsible for disease
resistance in subsequent generations. Kilpatrick (2006)
expanded on this idea and quantitatively demonstrated
the potential increase in population growth rates that
might result from this approach in various species of
Hawaiian forest birds.

VanderWerf (2009) speculated that the Oahu Ele-
paio suffers from higher rates of nest predation than
the Kauai Elepaio (C. sclateri) and the Hawaii Elepaio
(C. sandwichensis) because the forests where most
remaining Oahu Elepaio occur are dominated by non-
native, fruit- or nut-bearing trees that that are attrac-
tive to rats. Determining whether nest success differs
between native versus nonnative and fruiting versus
nonfruiting tree species would be valuable. Variation
in nest predation in forests with different species com-
position or structure could offer another opportunity to
facilitate adaptation in the breeding biology of the
Oahu Elepaio and perhaps other bird species.

The purpose of this paper is to provide an update on
the conservation status of the Oahu Elepaio, focusing on
the severity of the two primary threats to the species, nest
predation by nonnative rats and avian pox. New tools for
controlling rats have become available since this issue was
last investigated (VanderWerf et al, 2011), and we
expected that improved management may have resulted in

increased elepaio reproduction. The potential to manage
the threat from pox indirectly through rat control had
been shown theoretically (Kilpatrick, 2006), but empirical
data on pox prevalence had not been examined since 2004
(VanderWerf et al., 2006). We addressed these issues using
a long-term data set spanning 27 years from 1995 to 2021.

2 | METHODS

2.1 | Study species

The Oahu Elepaio is nonmigratory and sedentary, and
pairs defend all-purpose territories 1-2 ha in size (Van-
derWerf, 2020). They are insectivorous and eat insects,
spiders, and other arthropods that they catch from many
different substrates in a variety of forest types
(VanderWerf, 1994, 2018). Both sexes build the nest,
incubate the eggs, and feed the nestlings. Only the female
incubates and broods at night, leading to higher preda-
tion on females by nocturnal rats and a skewed sex
ratio in some areas (VanderWerf, 2009; VanderWerf
et al., 2013). The clutch size is usually two eggs, occasion-
ally one or three. Double-brooding is uncommon and
occurs more often in years with higher rainfall
(VanderWerf et al., 2019). Fledglings are fed by their par-
ents for 4-6 weeks and are easy to locate by their persis-
tent begging calls (VanderWerf, 2020).
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2.2 | Study sites

We studied elepaio in 11 sites that encompassed all large
remaining subpopulations of the species (Figure 1). Six
sites were located in the Waianae Mountains of western
Oahu (Ekahanui, Makaha, Makua, Palehua, Palikea, and
Schofield Barracks) and five sites were located in the
Koolau Mountains of eastern Oahu (Kuliouou, Moana-
lua, Pia, Waikane, and Wailupe). Prevailing winds from
the northeast cause generally higher rainfall in the
Koolau Mountains and a rain shadow in the Waianae
Mountains, with Moanalua and Waikane being the wet-
test study sites and Makaha and Makua being the driest.
Forest in all sites was dominated by nonnative plants, but
several sites (Ekahanui, Makaha, Makua, Palikea, and
Schofield Barracks) also supported substantial amounts
of native vegetation.

2.3 | Pox prevalence

We mist-netted and banded elepaio year-round from 1995
to 2021 and inspected them for visible signs of pox. As
described by VanderWerf et al. (2006), we categorized
each elepaio as being healthy or having active pox or inac-
tive (healed) pox. We regarded elepaio with soft swellings,
warty growths, open sores, or crusty scabs on the toes,
feet, legs, bill, or face as having active pox, and those with
missing or deformed toes, feet, or bill as having inactive
or healed pox (Figure S1). We regarded elepaio with no
visible symptoms as healthy. We categorized elepaio with
healed pox separately because the deformities persist for
the remainder of the bird's life and can obfuscate tempo-
ral patterns of pox prevalence. We did not confirm the
pox diagnosis with histopathology or genetic testing
because collecting a tissue sample by biopsy from such a
small bird could have exacerbated the lesions and we did
not want to risk increasing mortality in this endangered
species (VanderWerf et al., 2006). No other pathogen
known to occur in Hawaii causes cutaneous lesions like
those observed in elepaio. Presence of the distinctive cuta-
neous lesions is a common method of identifying birds
infected with pox and has been used in many previous
studies (e.g., Atkinson et al., 2005; McNew et al., 2021;
Parker et al., 2011; van Riper et al., 2002; Zylberberg
et al., 2012).

We calculated annual pox prevalence as the number
of individuals with active pox divided by the total num-
ber of birds captured each year. We examined active pox
prevalence over time using multiple linear regression,
with pox prevalence as the dependent variable and year
and annual rainfall as continuous predictors. We calcu-
lated a single measure of annual rainfall by averaging

rainfall from six National Weather Service gauges
(Figure 1; Moanalua, Niu Valley, Palolo Fire Station,
Kunia Substation, Schofield Barracks, and Palehua) that
were closest to the study sites. We examined the relation-
ship between pox prevalence during two time periods,
1995-2004, which was analyzed previously by Vander-
Werf et al. (2006), and 2005-2021, which has not been
analyzed previously.

24 | Ratcontrol

Rats were first controlled to protect Oahu Elepaio in the
southeastern Koolau Mountains using an experimental
approach in which rats were not controlled for 1 or
2 years, then rat control was implemented to allow mea-
surement of the effects of rat control (VanderWerf &
Smith, 2002). After initial demonstration of the efficacy
of rat control, efforts have focused on protecting as many
elepaio breeding pairs as possible in core populations
across the island. Methods of rat control have changed
and improved over time. From 1996 to 2012, the primary
methods of rat removal were snap traps and poison bait
containing 0.005% diphacinone in the form of either
Eaton's bait blocks (J.T. Eaton Inc., Twinsburg, Ohio) or
Ramik mini-bars (HACCO Inc., Randolph, Wisconsin).
Bait was placed in tamper-resistant plastic bait stations to
shield it from rain and reduce the risk of poisoning to
nontarget species. Use of poison bait was discontinued in
2013 following a change in the product labels. Use of
more efficient, automated, pneumatic rat traps made by
the Goodnature company began in 2012. At first the
Goodnature traps were deployed only in each elepaio ter-
ritory, but at some sites managed by the Army Natural
Resources Program (ANRP; Ekahanui, Palehua, Palikea)
they were deployed in large grids of up to 300 traps.
Finally, aerial broadcast of the rodenticide Diphacinone-
50 was conducted at Schofield Barracks by the ANRP in
November-December of 2017 and 2020. For more details
on rat control methods, see VanderWerf and Smith
(2002), VanderWerf (2009), and VanderWerf et al. (2011).

2.5 | Elepaio nest success and fecundity

We monitored Oahu Elepaio reproduction from 1995 to
2021 by visiting each territory at 1-2-week intervals to
search for and monitor nests and document the presence
of fledglings. For each nest we recorded the tree species
and categorized the outcome as successful, failed, aban-
doned, or unknown. We counted nests as successful if
they fledged at least one chick and we calculated nest
success as the successful proportion of nests, not
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including abandoned nests or those of unknown out-
come. We considered nests to have been abandoned if
construction was not completed or if no eggs or incuba-
tion behavior were observed. It is possible that some
nests counted as abandoned were depredated before
incubation was observed, but there is no way to know
this, and we have made this same assumption since the
beginning of the study, so any bias has been consistent.
For more details on Oahu Elepaio monitoring methods
see VanderWerf and Smith (2002), VanderWerf (2009),
and VanderWerf et al. (2011).

We investigated annual variation in nest success
using mixed model logistic regression, with nest success
(yes or no) as the response variable, and rat control (yes
or no), year, site, and whether the nest tree was native
(yes or no) and fruit-bearing (yes or no) as factors. We
examined variation in elepaio fecundity using a General
Linear Mixed Model, with number of fledglings per pair
as the dependent variable, rodent control (yes or no), site,
and year as factors. Although fecundity data ranged from
zero to four and had a low mean value, McDonald and
White (2010) demonstrated that regular regression based
on a normal distribution performed better than Poisson
or multinomial regression and was the best analytical
method for fecundity data like these. We also examined
temporal patterns of fecundity using regression of aver-
age annual fecundity as the response variable and year as
the predictor, with separate regressions with and without
rat control because of differences in the years for which
data were available. We did not include fecundity data
from Makaha or Waikane because it was already deter-
mined that rat control was less effective at those sites and
management was discontinued in 2009 (VanderWerf
et al., 2011). For analyses involving site, we lumped sites
with small samples sizes that were geographically close
(Pia and Kuliouou, and Palehua and Palikea) and we
excluded data from two sites where very few nests were
found (Makua and Waikane, three nests each). All ana-
lyses were done using Minitab 17 (2010).

3 | RESULTS

3.1 | Pox prevalence

We mist-netted and banded 677 Oahu Elepaio from 1995
to 2021 (25 + 3 SE birds per year), including initial cap-
tures and recaptures, of which 77 had active pox, 62 had
inactive or healed pox, and 538 had no pox symptoms.
Active pox prevalence was related to both year and
annual rainfall (F,,, = 18.34, p < 0.001, R* = 60.5%),
and declined from a peak of 0.47 in 1996 to zero in sev-
eral recent years (Figure 2). From 1995 to 2004, pox
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prevalence averaged 21% + 4%, as reported previously by
VanderWerf et al. (2006). In contrast, from 2005 to 2021,
pox prevalence averaged only 2% + 0.1%. From 1995 to
2004 there was a positive relationship between pox preva-
lence and annual rainfall (R*> = 45.4%, slope = 0.008,
F; ¢ = 6.64, p = 0.03), but in 2005-2021 there was no rela-
tionship between rainfall and pox (Figure 3; R* = 0.1%,
slope = —0.00009, F; ;5 = 0.01, p = 0.92).

3.2 | Elepaio nest success and fecundity

We found 1701 elepaio nests, of which 721 were success-
ful, 540 failed, 287 were abandoned, and 153 had an
unknown outcome. Nest success was higher with rat con-
trol (58% + 1%) than without rat control (42% + 6%;
Fj 1212 = 3.28, p = 0.02) and did not differ among study
sites (range 52%-66%; Fip 1212 = 1.16, p = 0.31) or years
(Fa251212 = 1.34, p = 0.12). Elepaio nested in 35 different
tree species, of which 10 were native and 25 were nonna-
tive (Table S1). Nest success did not differ significantly
between native tree species (52% + 6%) and nonnative
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With rat control No rat control TABLE 1 Oahu Elepaio fecundity
and SE with and without rat control at
Site Fecundity # pair-years Fecundity # pair-years each study site
Ekahanui 0.76 + 0.03 469 0.50 + 0.10 26
Moanalua 0.67 + 0.04 228 0.51 + 0.10 35
Palehua+Palikea 0.78 + 0.06 174 0.33 £0.21 6
Pia + Kuliouou 0.67 + 0.07 95 0.29 + 0.08 34
Schofield Barracks 0.91 + 0.05 296 0.57 + 0.08 76
Wailupe 0.79 + 0.04 411 0.41 + 0.11 22
All sites combined 0.78 + 0.02 1673 0.48 + 0.04 199
1207 ) D'__Ei‘g{"l‘;ﬁ'tml have been ameliorated compared to several decades ago.
= 100 4 Nest predation has been managed with rat control in
p &
<
< many areas (VanderWerf, 2009; VanderWerf et al., 2011;
on 4 . . .
g 080 VanderWerf & Smith, 2002), and evolution to nest higher
=]
E 0.60 - , N S o4 — off the ground also likely played a role in increased
z AN N\ L hree e fecundity (VanderWerf, 2012). Elepaio appear to have
E 0401 LB Yh evolved resistance to avian pox through natural selection,
3 020 | %'1 perhaps facilitated to some degree by rat control.
0.00 T T T T T
1995 2000 2005 2010 2015 2020
Year 4.1 | Avian pox resistance
FIGURE 4 Fecundity (SE) of Oahu Elepaio over time with and

without rat control, with least squares regression lines

tree species (58% + 6%; Fi121o = 1.73, p = 0.19) or
between fruiting (57% + 1%) and nonfruiting species
(62% + 6%; F1 1212 = 0.54, p = 0.46). Nest success was simi-
lar in the three tree species used most often (strawberry
guava [Psidium cattleianum), 60%; kukui [Aleurites moluc-
cana), 64%; and mango [Mangifera indica), 62%), which
together accounted for 72% of all nests (Table S1).

Annual fecundity of elepaio pairs was higher with rat
control (0.78 + 0.02) than without rat control (0.48
+ 0.04; Table 1; Fjjg40 = 22.99, p < 0.001) and varied
among sites (Fsjgq0 = 3.26, p = 0.006) and years
(Fas5.1840 = 2.44, p < 0.001). Average annual fecundity
showed some indication of increasing over time
(Figure 4), with a stronger relationship (Fy4 = 3.21,
p = 0.09) and more rapid increase (coefficient = 0.012
per year) without rat control than with rat control
(F123 = 1.98, p = 0.17, coefficient = 0.006 per year).

4 | DISCUSSION

The conservation status of the Oahu Elepaio has
improved because of effective management and natural
adaptation. Effects of the two primary threats to the spe-
cies, nest predation by nonnative rats and avian pox,

VanderWerf et al. (2006) found that pox was common in
the Oahu Elepaio from 1995 to 2004 and that pox preva-
lence was higher during wet years. This pattern has
changed; since 2005, pox prevalence has been lower and
has not been related to rainfall. There have been several
very wet years since 2005 (VanderWerf et al., 2021), and
pox was common in other bird species on Oahu during
that time (Krend, 2011; VanderWerf et al., 2019; Vander-
Werf & Young, 2016), yet pox prevalence in elepaio
remained low. The most likely explanation for this
change is that individuals that were most susceptible to
pox died, and the remaining population has greater resis-
tance overall. The role that rat control played in acceler-
ating evolution of pox resistance, as advocated by
VanderWerf and Smith (2002) and Kilpatrick (2006), is
unknown, but nevertheless, the goal of disease resistance
has been achieved. Similar resistance, to avian malaria,
has been demonstrated in the Hawaii Amakihi (Foster
et al., 2007; Atkinson et al., 2013) and the Oahu Amakihi
(Krend, 2011). Garcia-Erill et al. (2022) found that resis-
tance to novel diseases was one of the most potent
drivers of evolution in warthogs (Phacochoerus spp.).

The development of pox resistance shown in this
study may represent the latest of several repeated adapta-
tions to variants of avian pox since the virus became
established in Hawaii in the late 1800s (Atkinson &
LaPointe, 2009; van Riper et al., 2002). Pox has been
reported in at least 374 bird species in 23 orders and there
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are 13 recognized variants of avian pox virus that are
defined primarily by their association with particular
host taxa (Atkinson & LaPointe, 2009; Williams
et al., 2021), at least two of which are known in Hawaii
and are most similar to fowl pox and canary pox
(Atkinson et al., 2012). Atkinson et al. (2012) demon-
strated that these variants differ in virulence in some
Hawaiian bird species and that individuals that had
recovered from one variant were not immune to the
other variant. It is possible that different pox variants
have arrived in Hawaii at various times, causing waves
of population decline and sometimes extinctions in
Hawaiian birds, and repeated selection for resistance to
each variant. Waves of extinction occurred in Hawaiian
birds in the late 1800s and early 1900s, shortly after pox
is suspected to have arrived in Hawaii (Atkinson &
LaPointe, 2009), and again in the 1960s and 1970s (Scott
et al., 1986; Banko & Banko, 2009), perhaps associated
with a newly arrived pox variant. VanderWerf (2001)
documented the demographic effects of an epizootic of
pox in the Hawaii Elepaio (C. sandwichensis) at Hakalau
Forest National Wildlife Refuge in the early 1990s, from
which the population recovered in several years.
Another variant of avian pox virus could arrive in
Hawaii at any time and could have renewed effects on
the Oahu Elepaio and other native bird species. This
risk makes the recent increase and expansion of the
Oahu Elepaio population even more important, so if
another pox variant does arrive there will be a robust
population that can adapt again. Biosecurity measures
to prevent the introduction of alien birds, mosquitoes,
and pathogens must be maintained and strengthened
(Kilpatrick et al., 2004).

Several other endemic Hawaiian bird species are in
imminent danger of extinction, primarily because of
increases in mosquito-borne diseases (Paxton et al.,
2016), and pox also is an increasing threat to endemic
birds in the Galdpagos Islands (McNew et al., 2021;
Williams et al., 2021). Evolution of pox resistance in the
Oahu Elepaio required at least several decades, perhaps
longer; similar evolution could occur in other species,
and management of other threats, such as predation, par-
asitism, and habitat degradation, could help to minimize
population declines so there is time for adaptation to
occur before the species become extinct.

4.2 | Elepaio fecundity and rat control

Results of this study demonstrate that rat control remains
an effective method of increasing reproduction of the
Oahu Elepaio and justify the continued use of this man-
agement technique (VanderWerf, 2009; VanderWerf

Ajournal of the Society for Conservation Biclogy

et al., 2011). In addition to the increase in elepaio fecun-
dity caused by rat control, there was some evidence that
fecundity increased over time, and there probably were
several causes for this. First, improvements in rat control
methods, particularly trap grids and aerial broadcast,
allowed treatment of larger areas and resulted in less
edge effect and immigration. Second, the decline in pox
prevalence presumably resulted in fewer debilitated indi-
viduals that were unable to reproduce. Elepaio infected
with pox often cannot attract a mate or are abandoned by
their mate, and thus their lack of reproduction is not
accounted for in per-pair fecundity measures. Third, evo-
lution of increasing nest height resulted in less nest pre-
dation (VanderWerf, 2012), and this presumably was
more important in areas where rats were not controlled,
accounting for the faster increase in fecundity in areas
without rat control (Figure 4).

Rat control was effective at all sites examined in this
study, but there was variation in elepaio fecundity among
sites and in the response by elepaio to rat control. Some
of the variation among sites may be related to the
methods of rodent control used, particularly at sites man-
aged by the ANRP, where control methods have pro-
gressed to large grids consisting of hundreds of traps and
aerial broadcast of rodenticide in 2017 and 2020. Elepaio
fecundity was highest at Schofield Barracks, and that is
the only site where aerial broadcast of rodenticide has
been used. It is also possible there is variation in rat
abundance among the study sites and in the efficacy of
rat control methods caused by differences in terrain, for-
est structure, food availability, and other factors. It would
be valuable to examine efficacy of different rat control
methods in more detail to ascertain whether trapping
grids and aerial broadcast are indeed more effective at
reducing rat abundance and enhancing elepaio reproduc-
tion. Fecundity, and not nest success, should be used as
the primary measure of efficacy because nest success is
more affected by stochastic weather events among years
and fecundity is a measure of reproduction throughout
the year. Fecundity of Oahu Elepaio was lowest at Moa-
nalua and rodent control had the least effect on elepaio
at that site (Table 1). Moanalua is the wettest of the study
sites and more often experienced weather conditions with
heavy rain and strong winds that can cause elepaio nests
to fail, and there was no large trapping grid.

Apart from rat control, much of the annual variation
in elepaio fecundity among years is related to variation in
rainfall, with elepaio producing more offspring in wet
years because of higher food availability (VanderWerf
et al., 2021), and this variation in fecundity has implica-
tions for the efficacy of rat control. In dry years, such as
1998 and 2001, fecundity of elepaio was low even with
rat control, and the effect of rat control was lower than in
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other years, perhaps because rat abundance was lower in
such years.

4.3 | Nest success and tree species
Contrary to our prediction, nest success did not differ
between fruiting and nonfruiting tree species, but this
comparison alone may not be sufficient to resolve the
issue of whether fruit abundance influences nest preda-
tion. Most areas on Oahu where elepaio remain are dom-
inated by nonnative, fruit-bearing trees, particularly
strawberry guava, mango, kukui, and Christmasberry
(Schinus terebinthifolius). In most areas, the few native
trees are surrounded by nonnative fruit-bearing trees,
and rats can easily travel from crown to crown through
the forest canopy. Even if nonfruiting trees are less attrac-
tive to rats, such trees are not isolated and nests in them
likely are subjected to similar predation pressure as nests
in fruiting trees. It would be valuable to examine Oahu
Elepaio nest success in an area dominated by nonfruiting
native trees, if such a place still exists. Alternatively, mea-
suring nest success in relation to broader scale habitat
variables, such as canopy height, spacing between trees,
understory density, and relative density of fruiting and
nonfruiting trees in the neighborhood of elepaio nests,
might reveal other important factors and more subtle var-
iation in predation pressure. Elepaio have persisted in
some areas of nonnative forest without any management,
and the habitat in some of those areas has peculiar char-
acteristics, such as an exceptionally tall canopy and a
sparse understory, that could make it more difficult for
rats to find elepaio nests.

There were some noteworthy patterns in nest success
among individual tree species (Supplemental Table S1).
The two most-commonly used native trees were papala
kepau (Pisonia umbellifera; n = 43 nests) and ohia
(Metrosideros polymorpha; n = 13 nests), but nest success
was very different in these two species. Nest success was
100% in ohia, which has tiny wind-dispersed seeds that
are not attractive to rats, and this dominant native can-
opy tree is the species used for nesting most often by the
Hawaii Elepaio and Kauai Elepaio in many areas
(VanderWerf, 2020; VanderWerf et al., 2006). Conversely,
nest success was only 35% in papala kepau, which has
large fruit clusters with very sticky sap that can cause
entanglement and possibly mortality of elepaio (EAV per-
sonal observation), and which were used by the Hawai-
ian people to snare birds in the past. Among nonnative
trees, nest success was low in Christmasberry (43%), a
shorter, shrubby tree in which elepaio nests are usually
lower off the ground and thus more accessible to rats
and more subject to predation (VanderWerf, 2012).

Nest success also was low, 35%, in mountain apple (Syzy-
gium malaccense), which has large, soft fruits that are
thought to be especially attractive to rats.

Apart from nest predation, the most common cause
of nest failure was extreme weather events with heavy
rain and strong wind, and the frequency of these storms
varied among years (VanderWerf et al., 2021). Many pairs
renested after failure and eventually fledged chicks, but
nest success alone was not a good indicator of reproduc-
tion because of stochastic variation in storms.

5 | CONCLUSIONS

The population of the Oahu Elepaio is still relatively
small and the range is still fragmented, but both of these
parameters are improving. Ongoing surveys by P. Taylor
have shown that elepaio numbers have increased in the
Waianae Mountains by 240% compared to previous sur-
veys of the same areas in 2006-2011 (VanderWerf
et al., 2013) and that spatial gaps between some subpop-
ulations have been filled, but surveys are not yet com-
plete. Similar surveys are needed in the Koolau
Mountains to provide updated information for the entire
island.

The overall management strategy for the Oahu Ele-
paio has been effective, which was to control rats in the
remaining core populations so they acted as sources of
emigrants that supported surrounding sinks where nest
predation caused local population decline (USFWS, 2006;
VanderWerf & Smith, 2002). Rat control gave pox-
resistant elepaio disproportionate ability to reproduce
(Kilpatrick, 2006; VanderWerf & Smith, 2002) and pro-
tected low nests that otherwise would have been vulnera-
ble, allowing some margin for error in nest site selection
and more time for evolution of nest height to occur. Dis-
persal of young birds from managed areas not only sup-
ported the surrounding sinks demographically, but also
may have spread the accelerated increase in genes for
pox resistance, thereby transferring some of the manage-
ment benefits to areas that were not managed. If the nat-
ural adaptations in pox resistance and nest height
continue, rat control may become less important for
ensuring survival of the species, and it is possible that
someday the Oahu Elepaio could break free from conser-
vation reliance (Reed et al., 2012; Scott et al., 2010). In
Figure 4, both regression lines of fecundity over time are
increasing, but they are converging and eventually may
meet (or at least may overlap broadly in standard errors),
which would indicate a release from conservation reli-
ance. This is not likely to occur for several decades, and
monitoring will be needed to determine whether that
point is ever reached.
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